Inactivation of potassium current in squid axon by a variety of quaternary ammonium ions

نویسنده

  • R P Swenson
چکیده

The characteristics of potassium channel block by a diverse group of quaternary ammonium (QA) ions was examined in squid axons. Altering the size and nature of the head and/or tail groups of the QA ions applied internally produced only quantitative differences in the potassium current block. Although their entry rate is diminished, compounds with head groups as large as 11 X 12 A are capable of occluding the channel, whereas the smallest QA ions, with head groups approximately 5 X 6 A, are not potent blockers. When one or three terminal hydrogens of the head group were replaced by hydroxyl moieties, the compound's blocking ability was diminished, suggesting that QA binding is not improved by hydrogen bonding at these positions. QA ions bound to their site within the potassium channel with 1:1 stoichiometry, and the site is perhaps 20% or more of the distance through the membrane electric field. Raising external potassium concentration did not alter the steady-state or kinetic features of the QA block of outward potassium currents; however, increasing temperature or adding Ba2+ internally increased the rate of decay of the QA-blocked currents. From the structure-function analysis of the QA ions, projections concerning both the architecture of the potassium channel's inner mouth and the significance of various chemical constituents of the ions were made. The potassium channel may now be pictured as having a wider mouth (up to 11 X 12 A) extending to the QA binding site and then narrowing quickly to the region of channel selectivity. Important alterations that improve the blocking ability of the compounds include: (a) lengthening the alkyl hydrocarbon tail group (up to 10 carbon), (b) lengthening a second hydrocarbon chain of the head group (e.g., decyldimethylphenylammonium bromide [C10DM phi]), and (c) adding a carbonyl moiety to the tail (e.g., ambutonium).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block of outward current in cardiac purkinje fibers by injection of quaternary ammonium ions

We have studied the effects of iontophoretic injection of the quaternary ammonium compounds tetraethylammonium (TEA) and tetrabutylammonium (TBA) in cardiac purkinje fibers. We find that TBA(+) is a more effective blocker than TEA(+), but injection of either compound reduces the time-dependent outward plateau currents, transient outward current (I(to)), and the delayed rectifier (I(x)). Our fin...

متن کامل

Inactivation of the Potassium Conductance and Related Phenomena Caused by Quaternary Ammonium Ion Injection in Squid Axons

Several analogues of the tetraethylammonium (TEA(+)) ion were injected into the giant axon of the squid, and the resultant changes in time course and magnitude of the potassium current (I(K)) were studied. For all the analogues used, three of the ethyl side chains of TEA(+) were left unchanged, while the fourth chain was either lengthened or shortened. Increasing the length of this chain increa...

متن کامل

Interaction of Tetraethylammonium

A number of compounds related to TEA+ (tetraethylammonium ion) were injected into squid axons and their effects on gK (the potassium conductance) were determined. In most of these ions a quaternary nitrogen is surrounded by three ethyl groups and a fourth group that is very hydrophobic. Several of the ions cause inactivation of gK, a type of ionic gating that is not normally seen in squid axon;...

متن کامل

Interaction of Tetraethylammonium Ion Derivatives with the Potassium Channels of Giant Axons

A number of compounds related to TEA(+) (tetraethylammoniumion) were injected into squid axons and their effects on g(K) (the potassium conductance) were determined. In most of these ions a quaternary nitrogen is surrounded by three ethyl groups and a fourth group that is very hydrophobic. Several of the ions cause inactivation of g(K), a type of ionic gating that is not normally seen in squid ...

متن کامل

The Inner Quaternary Ammonium Ion Receptor in Potassium Channels of the Node of Ranvier

Quaternary ammonium ions were applied to the inside of single myelinated nerve fibers by diffusion from a cut end. The resulting block of potassium channels in the node of Ranvier was studied under voltage-clamp conditions. The results agree in almost all respects with similar studies by Armstrong of squid giant axons. With tetraethylammonium ion (TEA), pentyltriethylammonium ion (C(5)), or non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 77  شماره 

صفحات  -

تاریخ انتشار 1981